If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3k^2+30k+63=0
a = 3; b = 30; c = +63;
Δ = b2-4ac
Δ = 302-4·3·63
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-12}{2*3}=\frac{-42}{6} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+12}{2*3}=\frac{-18}{6} =-3 $
| 5=h-14/9 | | 6+8y=70 | | 6=u+36/9 | | 17-x=-15 | | 7-x=-25 | | -2(3/2x-5)+7=-3x+17 | | 100e=10 | | (e/8)-4=6 | | 11=5y+15 | | 15=O.1e | | x^2-16x=144 | | 24.9=x/75^2(703) | | y=-1(-5/2)-9 | | 3x+4x+8x+9x=360 | | x+3x+4x+5x+8x+9x=360 | | 11c+-19=36 | | 1/6800=(.5)^t | | 42x^2+8x-2=0 | | 6+w/10.24=14 | | 2(5n+10)=61 | | g(8)=3(8)-7 | | 2*4^(x-3)=14 | | 64=r^-2 | | 107+(3x-98)=108 | | X^2+3x=5x+3 | | 2(4y-6)=-4y+22 | | (5w^2+9w+4)+(-2w^2+4w+4)-(5w^2+7w-5)=0 | | 38+(-31+6x)+(x+12)=180 | | 45+(-3x)+(15-x)=180 | | 70+(-3+5x)+(1+3x)=180 | | 2-2=x5+7 | | -6+3+5y=5y-3 |